Curriculum Vitae: Dr. Timothy Noël

Personal Information

Name	Timothy Noël					
	Department of Chemical Engineering & Chemistry					
	Eindhoven University of Technology					
Work Address	Den Dolech 2					
	5612 AZ Eindhoven, The Netherlands					
	Helix STW 1.48					
Work	+ 31-40-247-3623					
E-mail	t.noel@tue.nl					
Twitter	@NoelGroupTUE					
Date of BirthSeptember 02, 1982						
Place of Birth	Aalst					
Nationality	Belgian					
Civil status	Married					
Professional Experience						

2017 – present	Associate Professor at Eindhoven University of Technology					
2012 - 2017	Assistant Professor					
	Laboratory for Micro Flow Chemistry and Process Technology Department of Chemical Engineering and Chemistry					
	Eindhoven University of Technology, Eindhoven					
	The Netherlands					
	Research Interests: microfluidics, micro flow chemistry, organic synthetic chemistry, enantioselective catalysis, fluorine chemistry, catalytic carbon-carbon and carbon-heteroatom formation					
2013 – present	10% Research Professor					
	Department of Organic Chemistry (S4)					
	Ghent University, Ghent					
	Belgium					

2010 – 2011	Post-doctoral Research: Fulbright Scholar Department of Chemistry Novartis – MIT Center for Continuous Manufacturing Massachusetts Institute of Technology (MIT), Cambridge United States of America Host: Prof. Dr. Stephen L. Buchwald Collaboration with group of Prof. Dr. Klavs F. Jensen (Department of Chemical Engineering)						
	Research Topic: Cross-coupling reactions in continuous-flow – Towards a continuous manufacturing of pharmaceuticals.						
Education							
2005 – 2009	 Ph.D. in Sciences – Chemistry: BOF Research Fellow Laboratory for Organic and Bioorganic Synthesis Department of Chemistry Ghent University, Ghent Belgium Supervisor: Prof. Dr. Johan Van der Eycken Ph.D. Thesis: Synthesis and application of chiral dienes and chiral imidates for 						
	asymmetric transition metal catalysis.						
2005 – 2008	Doctoral School Department of Chemistry Ghent University, Ghent Belgium						
	Graduated with marks equivalent to high distinction.						
	Courses: Organometallic Chemistry; Asymmetric Synthesis; Bioorganic Chemistry; Advanced NMR; Advanced Chromatography; Advanced Academic English Writing Skills; Management of Research and Development in University and Industry.						
2004 – 2005	Predoctoral Training in Chemistry Department of Chemistry Ghent University, Ghent Belgium						
	Graduated with marks equivalent to high distinction – First of the year.						
2000 - 2004	Industrial Chemical Engineer (M.Sc.) Department of Chemical Engineering						

KaHo Sint-Lieven, Ghent Belgium

M.Sc. Thesis: *The synthesis of a fluorescence label with improved spectral properties for labeling D10-p5-2k as an HIV-1 inhibitor.*

Graduated with high distinction – First of the year.

1994 – 2000High School – Latin-SciencesSint-Jozefscollege, AalstBelgium

Recipient of the Excellence Award and Science Award. Graduated with high distinction – First of the year.

Scientific Awards

2017	-	- DECHEMA award "in recognition of ground-breaking work on continuous photo-chemical conversion in microfluidic systems".						
2016	-	"Thieme Chemistry Journal Award" for promising young professors at the beginning of their career.						
2015	-	VIDI grant (Netherlands Institute for Scientific Research, NWO), 800 k€.						
2013	-	Marie Curie Career Integration Grant, 100 k€.						
2012	-	VENI grant (Netherlands Institute for Scientific Research, NWO), 250 k€. Finalist European Young Chemist Award, EuCheMS Conference.						
2011	-	Incentive Award for Young Researchers 2011 (Comité de Gestion du Bulletin des Sociétés Chimiques Belges), 2 500 €.						
2010	-	Fulbright – Hays Award.						
2006	-	Best poster presentation in the chemistry section at the Ph.D. Symposium, Ghent University, $250 \in$.						
2004	-	Extraordinary Research Fund Fellowship (BOF fellowship, Ghent University).						
2000	-	Excellence Award at Sint-Jozefscollege, Aalst, Belgium. Science Award at Sint-Jozefscollege, Aalst, Belgium.						

- Selective sp³ C-H Aerobic Oxidation enabled by Decatungstate Photocatalysis in Flow.
 Laudadio, G; Govaerts, S.; Wang, Y.; Ravelli, D.; Koolman, H. F.; Fagnoni, M.; Djuric, S. W.;
 <u>Noël, T. Angew. Chem. Int. Ed.</u> 2018, DOI: 10.1002/anie.201800818.
- Continuous-flow in-line solvent-swap crystallization of Vitamin D3.
 Escriba-Gelonch, M.; Hessel, V.; Maier, M.C.; <u>Noël, T.;</u> Neira D'Angelo, M. F.; Gruber-Woelfler, H.. Org. Process Res. Dev. 2018, DOI: 10.1021/acs.oprd.7b00351.
- Micro-flow high-p,T intensification of Vitamin D3 synthesis using a ultraviolet lamp.
 Escriba-Gelonch, M.; <u>Noël, T.;</u> Hessel, V. Org. Process Res. Dev. 2018, DOI: 10.1021/acs.oprd.7b00318.
- Scale up of a luminescent solar concentrator based photomicroreactor via numbering-up.
 Zhao, F.; Cambie, D.; Janse, J.; Wieland, E.; Kuijpers, K. P. L.; Hessel, V.; Debije, M. G.; <u>Noël,</u> <u>T.</u> ACS Sustainable Chem. Eng. 2018, 6, 422-429.
- **116** A personal perspective on the future of flow photochemistry. <u>Noël, T. J. Flow Chem.</u> **2017**, *7*, 87-93.
- 115 Visible Light-Mediated Selective Arylation of Cysteine in Batch and Flow.
 Bottecchia, C.; Rubens, M.; Gunnoo, S. B.; Hessel, V.; Madder, A.; <u>Noël, T.</u> *Angew. Chem. Int. Ed.* 2017, *56*, 12701-12707. (Highlighted in OPRD, DOI: 10.1021/acs.oprd.7b00371)
- An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor.
 Laudadio, G.; Straathof, N. J. W.; Lanting, M. D.; Knoops, B.; Hessel, V.; <u>Noël, T.</u> *Green Chem.* 2017, 19, 4061-4066.
- Flow Synthesis of Diaryliodonium Triflates.
 Laudadio, G.; Gemoets, H. P. L. Hessel, V.; <u>Noël, T.;</u> J. Org. Chem. 2017, 82, 11735-11741.
 (Highlighted in OPRD 2017, 21, 1187-1195)
- Effect of Acetonitrile-Based Crystallization Conditions on the Crystal Quality of Vitamin D₃.
 Gruber-Woelfler, H.; Escriba-Gelonch, M.; <u>Noël, T.;</u> Maier, M.C.; Hessel, V. Chem. Eng. Technol. 2017, 40, 2016-2024.
- Access to cyclic gem-difluoroacyl scaffolds via electrochemical and visible light photocatalytic radical tandem cyclization of heteroaryl chlorodifluoromethyl ketones.
 Adouama, C.; Keyrouz, R.; Pilet, G.; Monnereau, C.; Gueyrard, D.; <u>Noël, T.;</u> Medebielle, M. *Chem. Commun.* 2017, *53*, 5653-5656.
- 110 Visible light induced trifluoromethylation of highly functionalized arenes and heteroarenes in continuous flow.
 Abdiaj, I.; Bottecchia, C.; Alcazar, J.; <u>Noël, T.;</u> Synthesis 2017, 49, 4978-4985. (highlighted on the Thieme Chemistry homepage)
- 109 Continuous-flow in-line solvent-switch crystallization of Vitamin D3. Escriba-Gelonch, M.; Hessel, V.; Maier, M. C.; Neiro dÁngelo, F.; <u>Noël, T.;</u> Gruber-Woelfler, H. *Chem. Eng. J.* 2017, submitted.
- 108 Visible-Light Photocatalytic Decarboxylation of α,β-Unsaturated Carboxylic Acids: Facile access to Stereoselective Difluoromethylated Styrenes in Batch and Flow.
 Wei, X.-J.; Hessel, V.; <u>Noël, T.</u>; *ACS Catalysis* 2017, *7*, 7136-7140. (Highlighted in OPRD, DOI: 10.1021/acs.oprd.7b00371)

- A Modular Flow Design for the Meta-selective C-H Arylation of Anilines.
 Gemoets, H. P. L.; Laudadio, G.; Verstraete, K.; Hessel, V.; <u>Noël, T.;</u> Angew. Chem. Int. Ed.
 2017, 56, 7161-7165.
- Scale up of a luminescent solar concentrator based photomicroreactor via numbering-up.
 Zhao, F.; Cambie, D.; Janse, J.; Wieland, E. W.; Kuijpers, K. P. L.; Hessel, V.; Debije, M. G.; <u>Noël, T.;</u> 2017, 7, 7136-7140.
- **105** Every Photon Counts: Understanding and Optimizing Photon Paths in Luminescent Solar Concentrator-based Photomicroreactors (LSC-PMs).
- Cambie, D.; Zhao, F.; Hessel, V.; Debije, M. G.; <u>Noël, T.;</u> *React. Chem. Eng.* 2017, *2*, 561-566.
 104 Merger of Visible Light Photoredox Catalysis and C–H Activation for the Room Temperature C-2 Acylation of Indoles in Batch and Flow.
 Sharma, U. K.; Gemoets, H. P. L.; Schroeder, F.; <u>Noël, T.;</u> Van der Eycken, E. V. ACS Catalysis.
 2017, *7*, 3818-3823. (highlighted in OPRD 2017, DOI: 10.1021/acs.oprd.7b00193 and DOI: 10.1021/acs.oprd.7b00251)
- Safety assessment in development and operation of modular continuous-flow processes.
 Kockmann, N.; Thenee, P.; Fleischer-Trebes, C.; Laudadio, G.; <u>Noël, T. React. Chem. Eng.</u> 2017, 2, 258-280.
- A sensitivity analysis of a numbered-up photomicroreactor system.
 Kuijpers, K. P. L.; van Dijk, M. A. H.; Rumeur, Q.; Hessel, V.; Su, Y.; <u>Noël, T.</u> *React. Chem. Eng.* 2017, *2*, 109-115. (Invited contribution for the Emerging Investigators issue)
- Flow Chemistry Perspective for C–H Bond Functionalization.
 Laudadio, G.; <u>Noël, T.</u> In *Strategies for Palladium-Catalyzed Non-Directed and Directed C-H Bond Functionalization*, Maiti, D. & Kapdi, A. Eds., Elsevier, **2017**, pp. 275-288.
- 100 A leaf-inspired luminescent solar concentrator for energy efficient continuous-flow photochemistry.

Cambie, D.; Zhao, F.; Hessel, V.; Debije, M.G.; <u>Noël, T.</u> *Angew. Chem. Int. Ed.* **2017**, *56*, 1050-1054. (selected as VIP paper, which denotes the top 5% papers by the referees and the editor)

- 99 Practical Photocatalytic Trifluoromethylation and Hydrotrifluoromethylation of Styrenes in Batch and Flow.
 Straathof, N. J. W.; Cramer, S. E.; Hessel, V.; <u>Noël, T. Angew. Chem. Int. Ed.</u> 2016, 55, 15549-
- 15553.
 98 Micro-Flow Photosynthesis of New Dienophiles for Inverse-Electron-Demand Diels-Alder Reactions. Potential applications for pretargeted in vivo PET imaging.
 Billaud, E. M. F.; Shahbazali, E.; Ahamed, M.; Cleeren, F.; <u>Noël, T.</u>; Koole, M.; Verbruggen, A.; Hessel, V.; Bormans, G. *Chem. Sci.* 2017, *8*, 1251-1258.
- Disulfide-Catalyzed Visible-Light Oxidative Cleavage of C=C Bonds and Evidence of an Olefin-Disulfide Charge-Transfer Complex.
 Deng, Y.; Wei, X.-J.; Wang, H.; Sun, Y.; <u>Noël, T.</u>; Wang, X. *Angew. Chem. Int. Ed.* 2017, 56, 832-836. (selected as Hot paper)
- 96 Mild and selective base-free C–H arylation of heteroarenes: Experiment and computation. Gemoets, H. P. L.; Kalvet, I.; Nyuchev, A. V.; Erdmann, N.; Hessel, V.; Schoenebeck, F.; <u>Noël,</u> <u>T. Chem. Sci.</u>, 2017, 8, 1046-1055.
- **95** Photo-Claisen Rearrangement of Allyl Phenyl Ether in Micro-Flow: Influence of Phenyl Core Substituents and Vision on Orthogonality.

Shahbazali, E.; Noël, T.; Hessel, V. J. Flow Chem., 2016, 6, 252-259.

- 94 A mechanistic investigation of the visible light photocatalytic trifluoromethylation of heterocycles using CF₃I in flow.
 Su, Y.; Kuijpers, K. P. L.; Konig, N.; Shang, M.; Hessel, V.; <u>Noël, T.</u> Chem. Eur. J., 2016, 22, 12295-12300.
- **93** Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors.

Shang, M.; <u>Noël, T.</u>; Su, Y.; Hessel, V. AIChE J., 2017, 63, 689-697.

- Batch and flow synthesis of disulfides by visible light induced TiO₂ photocatalysis.
 Bottecchia, C.; Erdmann, N.; Tijssen, P. M. A.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; <u>Noël</u>, <u>T. ChemSusChem</u>, 2016, *9*, 1781-1785. (Highlighted in OPRD DOI: 10.1021/acs.oprd.6b00321)
- 91 Visible Light-Induced Trifluoromethylation and Perfluoroalkylation of Cysteine Residues in Batch and Continuous Flow.
 Bottecchia, C.; Wei, X.-J.; Kuijpers, K. P. L.; Hessel, V.; <u>Noël, T. J. Org. Chem.</u> 2016, 81, 7301-7307.
- **90** From alcohol to 1,2,3-triazole via a multi-step continuous-flow synthesis of a rufinamide precursor.

Borukhova, S.; Noël, T.; Metten, B.; de Vos, E.; Hessel, V. Green Chem. 2016, 18, 4947-4953.

- 89 Palladium-catalyzed aerobic oxidative coupling of o-xylene in flow: a safe and scalable protocol for cross-dehydrogenative coupling.
 Erdmann, N. E.; Su, Y.; Bosmans, B.; Hessel, V.; <u>Noël, T.</u> Org. Process Res. Dev., 2016, 20, 831-835.
- 88 Utilization of milli-scale coiled flow inverter in combination with phase separator for continuous-flow liquid-liquid extraction processes.
 Vural-Guersel, I.; Kurt, S. K.; Aalders, J.; Wang, Q.; <u>Noël, T.;</u> Nigam, K.D.P.; Kockmann, N.;
- Hessel, V. *Chem. Eng. J.*, 2016, 283, 855-868.
 87 Hydrogen chloride gas in solvent-free continuous conversion of alcohols to chlorides in microflow.

Borukhova, S.; Noël, T.; Hessel, V. Org. Process Res. Dev., 2016, 20, 568-573.

86 High pressure direct synthesis of adipic acid from cyclohexene and hydrogen peroxide via capillary microreactors.

Shang, M.; Noël, T.; Su, Y.; Hessel, V. Ind. Eng. Chem. Res., 2016, 55, 2669-2676.

- 85 Continuous ruthenium-catalyzed methoxycarbonylation with supercritical carbon dioxide.
 Stouten, S.C.; <u>Noël, T.;</u> Wang, Q.; Beller, M.; Hessel, V. *Catal. Sci. Technol.*, 2016, 6, 4712-4717.
- **84** Applications of continuous-flow photochemistry in organic synthesis, material science and water treatment.

Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; <u>Noël, T.</u> Chem. Rev., 2016, 116, 10276-10341.

83 Continuous-flow multi-step synthesis of Cinnarizine, Cyclizine and a Buclizine derivative from bulk alcohols.

Borukhova, S.; <u>Noël, T.</u>; Hessel, V. ChemSusChem, 2016, 9, 67-74.

82 Accelerated Gas-liquid Visible Light Photoredox Catalysis with Continuous-Flow Photochemical Microreactors.

Straathof, N. J. W.; Su, Y.; Hessel, V.; Noël, T., Nature Protocols, 2016, 11, 10-21

- 81 A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow. Su, Y.; Kuijpers, K.; Hessel, V.; <u>Noël, T.</u>, *React. Chem. Eng.*, **2016**, *1*, 73-81. (cover article)
- **80** Beyond organometallic flow chemistry: the principles behind the use of continuous-flow reactors for synthesis.
 - Noël, T.; Su, Y.; Hessel, V., Top. Organomet. Chem., 2016, 57, 1-42.
- Liquid phase oxidation chemistry in continuous-flow
 Gemoets, H. P. L.; Su, Y.; Shang, M.; Hessel, V.; Luque, R.; <u>Noël, T.</u>, *Chem. Soc. Rev.* 2016, 45, 83-117.
- **78** Leaching-Free Supported Gold Nanoparticles Catalyzing Cycloisomerizations under Microflow Conditions.

Schröder, F.; Erdmann, N.; <u>Noël, T.</u>; Luque, R.; Van der Eycken, E. V. *Adv. Synth. Catal.*, **2015**, *357*, 3141-3147.

77 Controlled Photocatalytic Aerobic Oxidation of Thiols to Disulfides in an Energy Efficient Photomicroreactor.

Su, Y.; Talla, A.; Hessel, V.; <u>Noël, T.</u>, *Chem. Eng. Technol*, **2015**, *38*, 1733-1742. (cover article) Heterocat, homocat, and biocat. What does better flow?

- 76 Heterocat, homocat, and biocat. What does better flow Hessel, V.; <u>Noël, T.</u>, *Chim. Oggi* **2015**, *33*, 44-49.
- Supported Liquid Phase Catalyst coating in micro flow Mizoroki–Heck.
 Stouten, S.; <u>Noël, T.</u>; Wang, Q.; Hessel, V. *Chem. Eng. J* 2015, 279, 143-148.
- 74 Supported Gold Nanoparticles as an Efficient, Reusable and Green Heterogeneous Catalyst for Cycloisomerization Reactions. Schröder, F.; Ojeda, M.; Erdmann, E.; Jacobs, J.; Van Meervelt, L.; Luque, R.; <u>Noël, T.</u>; Van der Eycken, J.; Van der Eycken, E. V. *Green Chem.* 2015, *17*, 3314-3318.
- **73** Room temperature catalysis enabled by light. <u>Noël, T.</u>, In *Sustainable catalysis, energy-efficient reactions and applications*. Luque, R.; Lam, F., Eds, Wiley-VCH, Berlin, **2015**, 135-154.
- 72 Pressure-Accelerated Azide–Alkyne Cycloaddition: Micro Capillary versus Autoclave Reactor Performance. Borukhova, S.; Seeger, A. D.; <u>Noël, T.</u>; Wang, Q.; Busch, M.; Hessel, V., *ChemSusChem* **2015**, *8*, 504-512.
- 71 Separation/Recycling Methods of Homogeneous Transition Metal Catalysts in Continuous Flow. Vural-Gursel, I.; <u>Noël, T.</u>; Wang, Q.; Hessel, V., *Green Chem.* **2015**, *17*, 2012-2026.
- Visible light photoredox catalysis.
 Erdmann, N.; <u>Noël, T.</u>, In *Green Chemistry in Drug Discovery: From academia to industry*, Le, P. T.; Richardson, P. F., Eds, Springer Science, 2015, accepted for publication.
- Reactor Concepts for Aerobic Liquid-phase Oxidation: Microreactors and tube reactors.
 Gemoets, H.; Hessel, V.; <u>Noël, T.</u>, In *Liquid Phase Aerobic Oxidation Catalysis Industrial applications and academic perspectives*, Stahl, S. S.; Alsters, P. L., Eds, Wiley-VCH, Berlin, 2016, pp. 399-419.
- **68** A compact photochemical design combining a capillary microreactor with small-scale LEDs for gas-liquid photocatalytic transformations.

Su, Y.; Hessel, V.; <u>Noël, T.</u>, AIChE J. 2015, 61, 2215-2227.

Accelerating Visible Light Photoredox Catalysis in Continuous-flow Reactors.
 Straathof, N. J. W.; <u>Noël, T.</u>, In *Visible light photocatalysis in organic chemistry*, C. R. J.
 Stephenson, T. Yoon, D. W. C. MacMillan, Eds., Wiley-VCH, Berlin, **2015**, accepted for

publication.

- 66 Iridium(I)-catalyzed ortho-directed hydrogen-isotope exchange in continuous-flow reactors. Habraken, E. R. M.; Vliegen, M.; <u>Noël, T.</u>, *J. Flow Chem.* **2015**, *5*, 2-5.
- 65 Continuous Metal Scavenging and Coupling to One-pot Copper-Catalyzed Azide-Alkyne Cycloaddition Click Reaction in Flow.
 Vural-Gursel, I.; Aldiansyah, F.; Wang, Q.; <u>Noël, T.</u>; Hessel, V. Chem. Eng. J. 2015, 270, 468-475.
- 64 Metal-free photocatalytic aerobic oxidation of thiols to disulfides in batch and continuous-flow. Talla, A.; Driessen, B.; Straathof, N. J. W.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; <u>Noël, T.</u>, *Adv. Synth. Catal.* **2015**, *357*, 2180-2186.
- 63 Connected nucleophilic substitution-Claisen rearrangement in flow Analysis for kilo-lab process solutions with orthogonality.
 Shahbazali, E.; Spapens, M.; Kobayashi, H.; Ookawara, S.; <u>Noël, T.</u>; Hessel, V. Chem. Eng. J. 2015, 281, 144-154.
- 62 Cross-coupling chemistry in continuous flow.
 <u>Noël, T.</u>; Hessel, V., In *New Trends in cross-coupling: Theory and applications*, T. Colacot, Ed., RSC, Cambridge (UK), 2015, pp. 608-642.
- 61 2- and 3-stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors.
 Shang, M.; Noël, T.; Wang, Q.; Su, Y.; Miyabayashi, K.; Hessel, V.; Hasebe, S., *Chem. Eng. J.*
 - **2015**, *260*, 454-462.
- 60 Aerobic C–H olefination of indoles via a cross-dehydrogenative coupling in continuous flow. Gemoets, H. P. L.; Hessel, V.; <u>Noël, T.,</u> *Org. Lett.* **2014**, *16*, 5800-5803.
- 59 The Claisen Rearrangement Part 1: Mechanisms and Transition States, Revisited with Quantum Mechanical Calculations and Ultrashort Pulse Spectroscopy Zelentsov, S.; Hessel, V.; Shahbazali, E., <u>Noël, T., ChemBioEng Rev.</u> 2014, 1, 230-240.
- 58 The Claisen Rearrangement Part 2: Impact Factor Analysis of the Claisen Rearrangement, in Batch and in Flow.
 - Hessel, V.; Shahbazali, E., Noël, T.; Zelentsov, S., ChemBioEng Rev. 2014, 1, 244-261.
- 57 Claisen-Umlagerung im Ruhr- und Durchflussbetrieb: Verstandnis des Mechanismus und Steuerung der Einflussgroßen

Hessel, V.; Shahbazali, E., <u>Noël, T.;</u> Zelentsov, S., Chem. Ing. Tech. 2014, 86, 2160-2179.

- A mild and fast photocatalytic trifluoromethylation of thiols in batch and continuous-flow.
 Straathof, N. J. W.; Tegelbeckers, B. J. P.; Hessel, V.; Wang, X.; <u>Noël, T.</u>, *Chem. Sci.* 2014, *5*, 4768-4773
- **55** Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

Su, Y.; Straathof, N. J. W.; Hessel, V.; <u>Noël, T.</u>, *Chem. Eur. J.* **2014**, *20*, 10562-10589. (Highlighted on the Chem Eur J facebook webpage; highlighted on Organic Chemistry Portal by Douglass F. Taber, 28/09/2015; cover of volume 20, issue 34; As of November/December 2015, this highly cited paper received enough citations to place it in the top 1% of its academic field based on a highly cited threshold for the field and publication year. Source: Essential Science Indicators).

54 Biotechnical microflow processing at the edge: lessons to be learnt for a young discipline.

Hessel, V.; Tibhe, J.; Noël, T.; Wang, Q. Chem. Biochem Eng. Q. 2014, 83, 167-188.

- 53 Catalyst retention in continuous flow with supercritical carbon dioxide.
 Stouten, S. C.; <u>Noël, T.</u>; Wang, Q.; Hessel, V. *Chem. Eng. Process.* 2014, 28, 26-32.
- 52 Micro Flow Chemistry: New possibilities for synthetic chemists. <u>Noël, T.</u>, In *Discovering the future of molecular sciences*, B. Pignataro, Ed., Wiley-VCH, Weinheim (Germany), 2014, pp.137-164.
- Eco-efficiency analysis for intensified production of an active pharmaceutical ingredient: a case study.
 Hessel, V.; Dencic, I.; Ott, D.; Kralisch, D.; <u>Noël, T</u>.; Meuldijk, J.; de Croon, M. H. J. M.; Laribi,
- Y.; Perrichon, P., *Org. Process Res. Dev.* 2014, *18*, 1326-1338.
 Heat-integrated novel process of liquid fuel production from bioresources process simulation and costing study.

Vural-Gursel, I.; Wang, Q.; <u>Noël, T</u>.; Hessel, V.; Kolb, G. A.; van Veen, A., *Chem. Eng. Trans.* **2014**, *39*, 931-936.

49 Rapid trifluoromethylation and perfluoroalkylation of five-membered heterocycles by photoredox catalysis in continuous flow.

Straathof, N. J. W.; Gemoets, H.; Wang, X.; Schouten, J. C.; Hessel, V.; <u>Noël, T.</u>, *ChemSusChem* **2014**, *7*, 1612-1617. (*Invited artwork for the cover of ChemSusChem*)

- 48 Visible Light Photocatalytic Metal-Free Perfluoroalkylation of Heteroarenes in Continuous Flow. Straathof, N. J. W.; van Osch, D. J. G. P.; Schouten, A.; Wang, X.; Schouten, J. C.; Hessel, V.; <u>Noël, T., J. Flow Chem.</u> 2014, 4, 12-17.
- **47** The accelerated preparation of 1,4-dihydropyridines using microflow reactors. Baraldi, P.T.; <u>Noël, T.</u>; Wang, Q.; Hessel, V., *Tetrahedron Lett.* **2014**, *55*, 2090-2092.
- **46** Metallic nanoparticles made in flow and their catalytic applications in organic synthesis. Shahbazali, E.; Hessel, V.; <u>Noël, T.;</u> Wang, Q., *Nanotechnology Rev.* **2014**, *3*, 65-86.
- 45 Solvent- and catalyst-free Huisgen cycloaddition towards Rufinamide in flow with decision on a greener and less expensive dipolarophile.
- Borukhova, S.; <u>Noël, T.</u>; Metten, B.; de Vos, E.; Hessel, V., *ChemSusChem* 2013, *6*, 2220-2225.
 Ferrocene-derived P,N ligands: Synthesis and application in enantioselective catalysis.
- Noël, T.; Van der Eycken, J., Green Processing and Synthesis 2013, 2, 297-309.
- **43** Improving energy efficiency of process of adipic acid synthesis in flow using pinch analysis. Vural-Gursel, I.; Wang, Q.; <u>Noël, T.;</u> Hessel, V.; Tinge, J. T., *Ind. Eng. Chem. Res.* **2013**, *52*, 7827-7835.
- 42 Flow Synthesis of phenylserine using threonine aldolase immobilized on Eupergit support. Tibhe, J.; Fu, H.; <u>Noël, T.;</u> Wang, Q.; Meuldijk, J.; Hessel, V., *Beilstein J. Org. Chem.* **2013**, *9*, 2168-2179.
- 41 Accelerating photoredox catalysis in continuous microflow. <u>Noël, T.;</u> Wang, X.; Hessel, V., *Monographic suppl. Series of Chimica Oggi - Chem. Today: Organometallic chemistry, biocatalysis and catalysis,* **2013,** *31*, 10-14.
- 40 A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow.

```
Wang, X.; Cuny, G. D.; <u>Noël, T.</u>, Angew. Chem. Int. Ed. 2013, 52, 7860-7864.
```

Lipase based biocatalytic flow process in a packed bed microreactor.
 Dencic, I.; de Vaan, S.; <u>Noël, T.</u>; Meuldijk, J.; de Croon, M.; Hessel, V., *Ind. Eng. Chem. Res.*

2013, *52*, 10951-10960.

- 38 Novel Process Windows for Enabling, Speeding-up and Uplifting Flow Chemistry. Hessel, V.; Kralisch, D.; Kockmann, N.; <u>Noël, T.</u>; Wang, Q., *ChemSusChem* 2013, *6*, 746-789. (Special attention: one of the most frequently cited papers in ChemSusChem among those published in 2012 or 2013; most cited paper in 2015)
- The impact of Novel Process Windows on the Claisen rearrangement.
 Kobayashi, H.; Driessen, B.; van Osch, D. J. G. P.; Talla, A., <u>Noël, T.</u>; Hessel, V., *Tetrahedron* 2013, *69*, 2885-2890.
- **36** Implementation of heat integration for efficient process design of direct adipic acid synthesis in flow.
 - Vural-Gürsel, I.; Wang, Q.; Noël, T.; Hessel, V. Chem. Eng. Trans. 2013, 35, 775-780.
- A view through Novel Process Windows.
 Stouten, S. C.; <u>Noël, T.</u>; Wang, Q.; Hessel, *Aust. J. Chem.* 2013, 66, 121-130.
- **34** Supported aqueous phase catalyst coating in micro flow Mizoroki-Heck reaction. Stouten, S. C.; <u>Noël, T.</u>; Wang, Q.; Hessel, *Tetrahedron Lett.* **2013**, *54*, 2194-2198.
- **33** Packed-bed microreactor for continuous-flow adipic acid synthesis from cyclohexene and hydrogen peroxide.

```
Shang, M.; Noël, T.; Wang, Q.; Hessel, V. Chem. Eng. Technol. 2013, 36, 1001-1009.
```

- Micro Process Technology 3. Applications Hessel, V.; <u>Noël, T.</u> Ullmann's Encyclopedia of Industrial Chemistry, DOI: 10.1002/14356007.016_002.
- 31 Membrane microreactors: Gas-liquid reactions made easy. <u>Noël, T.;</u> Hessel, V. *ChemSusChem* **2013**, *6*, 405-407.
- **30** Micro reaction technology for valorization of biomolecules using enzymes and metal catalysts. Dencic, I.; <u>Noël, T.</u>; Meuldijk, J.; de Croon, M.; Hessel, V. *Eng. Life Sci.* **2013**, *13*, 326-343.
- **29** Chemical intensification in flow chemistry through harsh reaction conditions and new reaction design.

<u>Noël, T.</u>; Hessel, V. In *Microreactors in preparative chemistry: Practical aspects in bioprocessing, nanotechnology, catalysis and more*, W. Reschetilowski, Ed., Wiley-VCH, Weinheim (Germany), **2013**, pp. 273-295. (DOI: 10.1002/9783527652891.ch11)

- 28 Direct synthesis of adipic acid in flow A sustainable process alternative. Vural-Gürsel, I.; Wang, Q.; <u>Noël, T.</u>; Hessel, V. *Chem. Eng. Trans.* **2012**, *29*, 565-570.
- 27 Green is the future of chemistry. Noël, T. *Green Proc. Synth.* **2012**, *1*, 399-401.
- 26 Window of opportunity Increase in profitability using modular compact plants and microreactor based flow processing.

Vural-Gürsel, I.; Hessel, V.; Wang, Q.; Noël, T.; Lang, J. Green Proc. Synth. 2012, 1, 315-336.

- Chiral imidate-ferrocenylphosphanes: Synthesis and application as P,N-ligands in iridium(I)-catalyzed hydrogenation of unfunctionalized and poorly functionalized olefins.
 Bert, K.; <u>Noël, T.;</u> Kimpe, W.; Goeman, J. L.; Van der Eycken, J. *Org. Biomol. Chem.* 2012, *10*, 8539-8550.
- 24 Threonine aldolase immobilization on different supports for engineering of productive, costefficient enzymatic microreactors.

Fu, H.; Dencic, I.; Tibhe, J.; Pedraza, C. A. S.; Wang, Q.; <u>Noël, T.</u>; Meuldijk, J.; de Croon, M.; Hessel, V.; Weizenmann, N.; Oeser, T.; Kinkeade, T.; Hyatt, D.; Van Roy, S.; Dejonghe, W.; Diels, L. *Chem. Eng. J.* **2012**, *207-208*, 564-576.

23 Modeling of anionic polymerization in flow with coupled variations of concentration, viscosity and diffusivity.

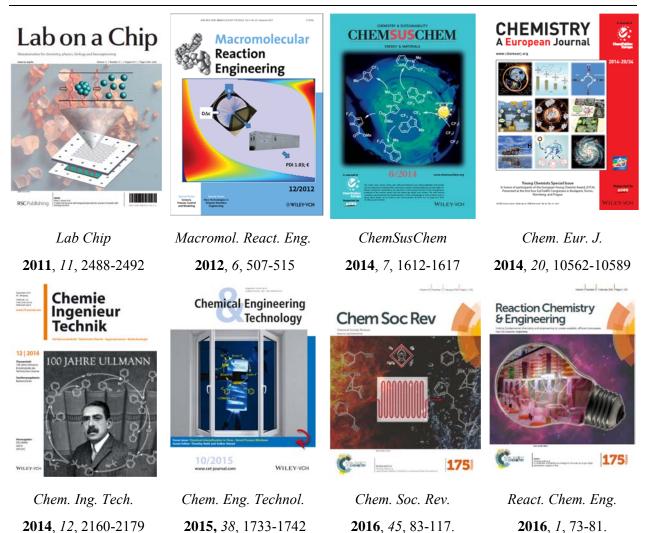
Cortese, B.; <u>Noël, T.</u>; de Croon, M.H.J.M.; Schulze, S.; Klemm, E.; Hessel, V. *Macromol. React. Eng.* **2012**, *6*, 507-515. (Cover article)

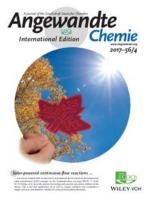
- 22 Copper(I)-catalyzed azide-alkyne cycloadditions in microflow: Catalyst activity, high T operation, and an integrated continuous copper scavenging unit. Varas, A. C.; <u>Noël, T.;</u> Wang, Q.; Hessel, V. *ChemSusChem* 2012, *5*, 1703-1707.
- 21 Micro Process Technology 1. Introduction Hessel, V.; <u>Noël, T.</u> Ullmann's Encyclopedia of Industrial Chemistry, DOI: 10.1002/14356007.q16_q01
- 20 Micro Process Technology 2. Processing Hessel, V.; <u>Noël, T.</u> Ullmann's Encyclopedia of Industrial Chemistry, DOI: 10.1002/14356007.b16 b37.pub2
- Potential analysis of smart flow processing and micro process technology for fastening process development Use of chemistry and process design as intensification fields.
 Hessel, V.; Vural-Gürsel, I.; Wang, Q.; <u>Noël, T.</u>; Lang, J. *Chem. Eng. Technol.* 2012, 35, 1184-1204.
- **18** Potentialanalyse von Milli- und Mikroprozesstechniken fuer die Verkuerzung von Prozessentwicklungszeiten Chemie und Prozess Design als Intensivierungsfelder. Hessel, V.; Vural-Gürsel, I.; Wang, Q.; Noël, T.; Lang, J. *Chem. Ing. Tech.* **2012**, *84*, 660-684.
- Chiral Imidate Ligands: Synthesis and Applications in Asymmetric Catalysis.
 <u>Noël, T.;</u> Bert, K.; Janssens, P.; Van der Eycken, J. In *Innovative Catalysis in Organic Synthesis: Oxidations, Hydrogenations and C–X Bond Forming Reactions*, P. G. Andersson, Ed., Wiley-VCH, Weinheim (Germany), 2012, pp. 309-325.
- Accelerating Pd-catalyzed C–F bond formation: Use of a microflow packed-bed reactor. <u>Noël, T.;</u> Maimone, T. J.; Buchwald, S.L. *Angew. Chem. Int. Ed.* 2011, 50, 8900-8903. (Selected as a hot paper by the editors of Angewandte Chemie. Highlighted in Org. Process Res. Dev. 2012 DOI: 10.1021/op300251d)
- 15 Suzuki-Miyaura cross-coupling of heteroaryl halides and aryl boronic acids in continuous-flow. <u>Noël, T.;</u> Musacchio, A. J. *Org. Lett.* **2011**, *13*, 5180-5183.
- A Teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions.
 Kuhn, S.; <u>Noël, T.</u>; Gu, L.; Heider, P. L.; Jensen, K. F. *Lab Chip* 2011, *11*, 2488-2492.
 (Selected as a Hot Paper; Invited artwork for the cover of Lab on a Chip, volume 11, number 15)
- Suzuki-Miyaura cross-coupling reactions in flow: Multistep synthesis enabled by a microfluidic extraction.
 <u>Noël, T.;</u> Kuhn, S.; Musacchio, A. J.; Jensen, K.F.; Buchwald, S.L. Angew. Chem. Int. Ed. 2011, 50, 5943-5946.

(Highlighted in Chemical & Engineering News 2011, 89, pp. 39)

12 Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging *via* acoustic irradiation.

Noël, T.; Naber, J.R.; Hartman, R.L.; McMullen, J.P.; Jensen, K.F.; Buchwald, S.L. Chem. Sci.


2011, *2*, 287-290.


(Highlighted in Chemistry World + interview with T. Noël: 13 january 2011; Highlighted in Conveying News: 24 january 2011; Top Ten Most Accessed Articles in December 2010, January 2011)

- Chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl)[2-(2-aminoethyl)phenyl)]palladium (II), XPhos first generation precatalyst.
 <u>Noël, T</u>. *e-EROS Encyclopedia of Reagents for Organic Synthesis* 2011, DOI: 10.1002/047084289X.rn01343.
- Cross-Coupling in Flow.
 <u>Noël, T.;</u> Buchwald, S.L. *Chem. Soc. Rev.* 2011, 40, 5010-5029.
 (One of the most accessed reviews in August 2011; highlighted in Faculty of 1000; *Highlighted in Org. Process Res. Dev.* 2012 DOI: 10.1021/op300251d)
- **9** Imidate-Phosphane ligands as highly versatile ligands for Palladium-catalyzed allylic substitution reactions.
 - Noël, T.; Bert, K.; Van der Eycken, E.; Van der Eycken, J. Eur. J. Org. Chem. 2010, 4056-4061.
- 8 Rhodium/olefin-catalyzed reaction of arylboronic acids with an alfa-acetamido acrylic ester: Mizoroki-Heck-type reaction versus conjugate addition.

Noël, T.; Gök, Y.; Van der Eycken, J. Tetrahedron: Asymmetry 2010, 21, 540-543.

- Novel C₂-symmetrical bisoxazolines with a chiral *trans*-2,3-diphenylcyclopropane backbone:
 Preparation and application in asymmetric catalytic reactions.
 Gök, Y.; <u>Noël, T.</u>; Van der Eycken, J. *Tetrahedron: Asymmetry* 2010, *21*, 2275-2280.
- **6** A novel *C*₂-symmetrical bisphosphane ligand with a cyclopropane backbone: Synthesis and application in Rh(I)-catalyzed Asymmetric 1,4-addition of arylboronic acids to cyclic enones. Gök, Y.; Noël, T.; Van der Eycken, J. *Tetrahedron: Asymmetry* **2010**, *21*, 2768-2774.
- *Trans-*(2*R*,3*R*)-diphenylcyclopropane-1,1-dimethanol: a pivotal diol for the synthesis of novel C₂-symmetric ligands for asymmetric transition metal catalysis.
 Vervecken, E.; Van Overschelde, M.; Noël, T.; Gök, Y.; Alvárez Rodríguez, S.; Cogen, S.; Van der Eycken, J. *Tetrahedron: Asymmetry* 2010, 21, 2321-2328.
- Cyclic Imidate Ligands.
 <u>Noël, T.;</u> Vandyck, K.; Van der Eycken, J. PCT Int. Appl. 2010, WO 2010115903 A1 20101014 (date filed: 02/06/2010).
- Chiral imidates as a new class of nitrogen-based chiral ligands: synthesis and catalytic activity in asymmetric aziridinations and diethylzinc additions.
 <u>Noël, T.;</u> Vandyck, K.; Robeyns, K.; Van Meervelt, L.; Van der Eycken, J. *Tetrahedron* 2009, 65, 8879-8884.
- Efficient one-step synthesis of chiral oxazoline-alcohol ligands via a cyclic imidate ester rearrangement.
 <u>Noël, T.;</u> Robeyns, K.; Van Meervelt, L.; Van der Eycken, E.; Van der Eycken, J. *Tetrahedron:*
- Asymmetry 2009, 20, 1962-1968.
 Some new C₂-symmetric bicyclo[2.2.1]heptadiene ligands: synthesis and catalytic activity in rhodium(I)-catalyzed asymmetric 1,4- and 1,2-additions. Noël, T.; Vandyck, K.; Van der Eycken, J. *Tetrahedron* 2007, 63, 12961-12967.

Angew. Chem Int. Ed. **2017**, *56*, 1050-1054

Guest Editorials

2012	Guest editor of a special issue of Challenges: "Challenges in Chemical Processes". (Together with Volker Hessel)
2015	Guest editor of a special issue in Journal of Flow Chemistry, volume 5, issue 3, pp. 123-194 "Flow Chemistry in North America". (Together with Aaron Beeler)
2015	Guest editor of a special issue in Chemical Engineering Technology: "Chemical intensification in flow" 2015 , issue 10 (Together with Volker Hessel)
2016	Guest editor of a special issue of Challenges: "Challenges in Chemical Processes". (Together with Volker Hessel)
2017	Guest editor of a special issue in ChemPhotoChem: "Flow photochemistry". (Together with Kevin-Booker Milburn)

Books

- **2018** Micro Process Technology, Hessel, V. and <u>Noël, T.</u> eds., Wiley-VCH, Weinheim (Germany), **2018** (book in preparation).
- 2017 Photochemical processes in continuous-flow reactors: From engineering principles to chemical applications, <u>Noël, T.</u> ed., World Scientific Publishing, London (UK), 2017, ISBN 9781786342188.
- **2016** Organometallic Flow Chemistry, <u>Noël, T.</u> ed., Springer, Heidelberg (Germany), **2016**, ISBN 978-3-319-33243-7.

Conferences participation – Oral Presentations

- 2018 Flow Chemistry Europe Meeting Cambridge (UK) (Invited Talk).
- 2018 5th Innovation for Health (Rotterdam, The Netherlands) (Invited Lecture).
- 2018 University Seminar at University of Graz (Graz, Austria) (Invited Lecture).
- 2017 Syngenta Chemistry Lecture 2017 (Stein, Switzerland) (Invited Lecture).
- **2017** Joint Meeting of 11th International Symposium on Integrated Synthesis (ISONIS-11) and 3rd International Symposium on Middle Molecular Strategy (3rd ISMMS) (Awaji Island, Japan) (Invited Lecture).
- 2017 University Seminar at University of Osaka (Osaka, Japan) (Invited Lecture).
- 2017 1692th Zasshikai Seminar University of Tokyo (Tokyo, Japan) (Invited Lecture).
- **2017** 17th Tateshina Conference (Tateshina, Japan) (Invited Lecture).
- **2017** iCAT-TUE Symposium (International Symposium on Catalysis for Sustainable Society) (Eindhoven, The Netherlands) (Invited Lecture)
- 2017 University Seminar Aarhus University (Aarhus, Denmark) (Invited Lecture).
- **2017** FROST 6 (6th Conference on Frontiers in Organic Synthesis Technology) (Budapest, Hungary) (Keynote Lecture, Conference Chair).
- 2017 Organic Chemistry day (La Giornata della Chimica Organica) (Pavia, Italy) (Invited Lecture).
- **2017** Advancing chemical synthesis through automation, processes and thinking, Beilstein Organic Chemistry Symposium 2017 (Potsdam, Germany) (Invited Lecture).
- 2017 COST Summer School CHAOS (Tallinn, Estonia) (Training Seminar).
- 2017 AMN/ISMM/APBCM/ANZNMF meeting (Tasmania, Australia) (Keynote Lecture).

- 2017 Invited seminar at University of Leipzig (Leipzig, Germany) (Invited Talk).
- 2017 Lab on a Chip Conference (Munich, Germany) (Invited Talk).
- **2017** Workshop "Electron Transfer, Radical Ions and Radical Chemistry" (Lyon, France) (Invited Talk).
- 2017 Invited seminar at Indian Institute of Science-Bangalore (Bangalore, India) (Invited Talk).
- 2017 Invited seminar at Indian Institute of Technology-Bombay (Mumbai, India) (Invited Talk).
- 2017 Advances in Organic Synthesis (AOS-2017) (Pune, India) (Invited Talk).
- **2017** Prof. K.V.Thomas Endowment International Symposium on New Trends in Applied Chemistry (Kochi, India) (Plenary Lecture).
- 2017 Flow Chemistry Conference Europe 2017 (Cambridge, UK) (Keynote Lecture).
- **2016** Dutch Design & Synthesis Guest Lectures seminar at Syncom (Groningen, The Netherlands) (Invited Talk).
- 2016 Flow Chemistry Society Miami (USA) (Invited Talk).
- 2016 Invited seminar at Merck (New Jersey, USA) (Invited Talk).
- 2016 Invited seminar at Abbvie (Chicago, USA) (Invited Talk).
- 2016 Invited seminar at Virginia Commonwealth University (Richmond, USA) (Invited Talk).
- **2016** The international conference on microreaction technology, IMRET 14 (Beijing, China) (Keynote Talk).
- **2016** 22nd International Congress of Chemical and Process Engineering, CHISA 2016 (Prague, Czech Republic) (Keynote Talk).
- **2016** 27th European Colloquium on Heterocyclic Chemistry (Amsterdam, The Netherlands) (Keynote Talk).
- 2016 39th Annual Meeting of the Brazilian Chemical Society (Goiania, Brazil) (Keynote Talk).
- **2016** Research Seminar at the Federal University of Rio de Janeiro (Rio de Janeiro, Brazil) (Invited Talk).
- 2016 NextGenChem@NL symposium (Nijmegen, Netherlands)
- 2016 Zing Flow Conference (Albufeira, Portugal) (Invited Talk, Session chair).
- 2016 Organic colloquium at Johannes Gutenberg University Mainz (Mainz, Germany) (Invited Talk).
- **2016** Research Seminar at Radboud University of Nijmegen (Nijmegen, The Netherlands) (Invited Talk).
- 2016 Research Seminar at University of Antwerp (Antwerp, Belgium) (Invited Talk).
- 2016 Research Seminar at University of Twente (Twente, The Netherlands) (Invited Talk).
- 2016 Flow Chemistry Conference Europe 2016 (Cambridge, UK) (Conference Chair Invited Talk).
- 2016 Flow Workshop Hasselt 2016 (Hasselt, Belgium) (Invited Talk).
- 2015 Webinar on 9th December 2015 for Technology Networks (Invited Talk).
- 2015 Pacifichem 2015 (Honolulu, Hawai, USA) (Invited Talk).
- 2015 EPIC5 (European Process Intensification Conference) (Nice, France) (Keynote Talk).
- **2015** Photochemistry Gordon Research Conference (Stonehill College, Easton, MA, USA) (Invited Talk).
- **2015** 17th International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC17) (Utrecht, Netherlands).
- 2015 NextGenChem@NL symposium (Leiden, Netherlands)
- **2015** ACS Meeting Denver, New Trends in Cross-Coupling Catalysis in Industry and Academia, Session dedicated to the 2015 ACS Award in Industrial Chemistry in honor of Dr. Thomas J.

Colacot (Johnson Matthey) (Denver, CO, USA) (Invited Talk).

- **2015** Lecture at DSM Geleen (Netherlands) (Invited talk).
- 2015 Flow Chemistry Society Berlin (Germany) (Conference & Session Chair Keynote Lecture).
- 2014 Netherlands Process Technology Symposium (NPS 14) (Netherlands) (Keynote Lecture).
- 2014 NextGenChem@NL symposium (Eindhoven, Netherlands).
- 2014 Automation in chemistry: Carbohydrate synthesis and continuous-flow (Germany) (Invited Talk).
- **2014** Queen's University Belfast (UK) (Invited Talk).
- 2014 Flow Chemistry Society Boston (USA) (Invited Talk).
- 2014 Engineering for a Sustainable Future Eindhoven (NL) (Invited Talk).
- 2014 Flow Chemistry Society Barcelona (Spain) (Invited Talk).
- **2014** University of Amsterdam Amsterdam (NL) (Invited Talk).
- 2013 FROST 4 Flow Chemistry Society Budapest (Hungary) (Invited Talk).
- 2013 Prof. Guangwen Chen's Group Dalian Institute of Chemical Physics Dalian 2013 (China) (Invited talk).
- **2013** Global Congress of Catalysis Dalian **2013** (China) (Invited talk). <u>Special attention</u>: Chair of Photocatalysis session.
- **2013** FLOHET 2013, Annual Florida Heterocyclic and Synthetic IUPAC Sponsored Conference, Florida **2013** (USA) (Invited talk).
- 2013 Lecture at Janssen Pharmaceuticals Beerse (Belgium) (Invited talk).
- 2012 MinacNed Conference, Amsterdam 2012 (The Netherlands), (Invited talk).
- 2012 European Young Chemist Award at Euchems Chemistry Conference, Prague 2012 (Czech Republic), (Invited talk).
- 2012 Euchems Chemistry Conference, Prague 2012 (Czech Republic).
- **2012** Incentive Award for Young Researchers Lecture at Vlaams Jongeren Congres, Oostende **2012** (Belgium), (Invited talk).
- 2012 Microwave & Flow Chemistry Conference, Lanzarote 2012 (Spain).
- 2011 15th Sigma-Aldrich Organic Synthesis Meeting, Spa 2011 (Belgium), Opening and Plenary Lecture, (Invited talk).
- 2011 Lecture at Ghent University, Department of Chemistry, Ghent 2011 (Belgium), (Invited talk).
- 2011 Lecture at EcoSynth, Oostende 2011 (Belgium), (Invited talk).
- 2010 Metals In Synthesis Seminars, Massachusetts Institute of Technology 2010 (USA).
- 2010 Flemish Youth Conference of Chemistry, Blankenberge 2010 (Belgium).
- 2009 13th Sigma-Aldrich Organic Synthesis Meeting, Spa 2009 (Belgium).
- 2009 42nd IUPAC Conference, Glasgow 2009 (Scotland, UK).
- 2009 COST Chemistry D.40, Turku 2009 (Finland).
- 2007 Flemish Youth Conference of Chemistry, Antwerp 2007 (Belgium).

Supervision and guidance of Ph.D. students

- **2018** *Enabling and accelerating C–H functionalization through continuous-flow chemistry.* Hannes P. L. Gemoets (TU/e).
- **2017** Accelerated (photo)redox chemistry in continuous-flow microreactors. Natan J. W. Straathof (TU/e).
- 2016 Flow Reactor Networks for integrated synthesis of active pharmaceutical ingredients.

Svetlana Borukhova (TU/e).

- **2016** Use of supported liquid-phase catalysts and supercritical CO₂ in continuous micro flow. Stefan C. Stouten (TU/e).
- **2016** The direct synthesis of adipic acid from cyclohexene and hydrogen peroxide by a continuous micro-flow process. Minjing Shang (TU/e).
- **2015** The chemical plant of tomorrow and the future. Process-design intensification at different production scales. Iris Vural-Gűrsel (TU/e). Special attention: Cum Laude.

Supervision and guidance of postdoctoral researchers

- 2017 Dr. Fang Zhao. Ph.D. from Tsinghua University. Current position:
- **2016** Dr. Alexander Nyuchev. Ph.D. from Lobachevsky State University of Nizhny Novgorod (Russia). Current position: Assistant Professor at Lobachevsky State University of Nizhny Novgorod (Russia).
- **2016** Dr. Yuanhai Su. Ph.D. from Dalian Institute of Chemical Physics. Current position: Professor at Shanghai Jiao Tong University. <u>Special attention:</u> recipient of 1000-talents scholarship.
- 2015 Dr. Nico Erdmann. Ph.D. from RWTH Aachen. Current position: consultant at Accenture.

Participation in research projects – Supervision and guidance of (under-)graduate students

2017	Automated screening of que	enching	g partners	and q	uenchi	ng rate	determination	with	database
	integration.								
	Niels J. Koenig (M.Sc. Student, TU/e)								
2017	Transition-Metal-Catalyzed	$C extsf{-}H$	Fluoroall	kylation	n of	Electror	n-Rich Heter	oarene	es Using

- Fluoroalkyl Bromide in Batch and Flow. Ali Saadun (M.Sc. Student, TU/e)
- **2017** *Numbering-up of LSC-photomicroreactors with a chamber-style distributor.* Jeroen Janse (M.Sc. Student, TU/e)
- **2017** *Visible-Light Photocatalyzed Difluoroalkylation of Alkynes.* Wout Boon (Erasmus M.Sc. Student, KULeuven, BE)
- **2017** *Electrochemical Oxidation of Sulfides in Continuous Micro-flow.* Menno Lanting (M.Sc. Student, TU/e)
- **2017** *Towards a modular design for an electrochemical microreactor* Wouter De Smet (M.Sc. Student, TU/e)
- **2017** *A broadly applicable red dye doped luminescent solar concentrator photomicroreactor.* Jeroen Dobbelaar (M.Sc. Student, TU/e).
- **2017** *Automated screening and optimization for photoredox catalysis.* Koen Drummen (M.Sc. Student, TU/e).
- **2017** *Arylation of cysteine residues via photoredox catalysis in batch and flow.* Marc H. M. van den Bosch (M.Sc. Student, TU/e).
- **2016** *Investigation of two UV-induced isomerizations by means of actinometry measurements.* Teodora Tsompanoglou (M.Sc. Student, TU/e).

- **2016** *Exploring the scope of the photocatalytic trifluoromethylation of styrenes in batch and flow.* Sten Cramer (M.Sc. Student, TU/e).
- 2016 A Comparison between Classical Cross-coupling and C-H Activation via Experiments, Cost Analysis and Green Metrics.
 - Arian Schouten (M.Sc. Student, TU/e).
- 2016 Sensitivity analysis of important process parameters for the scale-up of microreactors for photoredox catalysis via numbering-up.
 Rong Fan (M.Sc. Student, TU/e).
- **2016** *Rapid prototyping of Luminescent Solar Concentrator based photoreactors via 3D printing.* Eric W. Wieland (M.Sc. Student, TU/e).
- **2016** *Catalyst free electrochemical oxidation of sulfides in continuous microflow.* Bennie Knoops (M.Sc. Student, TU/e).
- **2016** *Cross-dehydrogenative coupling of aromatic compounds in continuous-flow microreactors.* Benjamin Bosmans (M.Sc. Student, TU/e).
- **2016** *Meta-Selective C-H Arylation of Electron-rich Aromatics in Micro Flow.* Kirsten Verstraete (M.Sc. Student, TU/e).
- **2016** Biomolecule Functionalization via Photoredox Catalysis. Maarten Rubens (M.Sc. Student, TU/e).
- **2015** Continuous-flow synthesis of CF3-vinylic compounds via Heck type coupling and photoredox catalysis.
 - Nicolle Beckers (M.Sc. Student, TU/e).
- **2015** Accurate Measurements of the Photon Flux in Multiphase Reactor Systems by Actinometry. Robin Verijke (M.Sc. Student, TU/e).
- **2015** *A convenient internal numbering-up strategy for the scale up of gas-liquid photoredox catalysis.* Koen Kuijpers (M.Sc. Student, TU/e).
- **2015** TiO_2 catalyzed aerobic oxidation of thiols in a photomicroreactor. Patricia Tijssen (M.Sc. Student, TU/e).
- **2014** *Continuous-flow synthesis of CF₃-vinylic compounds via Heck-type coupling.* Luuk Spijkers (M.Sc. Student, TU/e).
- **2014** Combining Photoredox Catalysis and C-H activation for the Site-selective Arylation of 1methylindole.
 - Liesbeth Colpaert (Erasmus Student, KaHo Sint Lieven).
- **2014** Direct Functionalization of Heterocycles through Generation of a Short-lived Organolithium Intermediate in Micro-Flow.
 - Sieuwert Blommaert (Erasmus Student, KaHo Sint Lieven).
- **2014** *The Enzymatic Epoxidation of Styrene in Microflow.* Robin Dellaert (M.Sc. Student, TU/e).
- **2014** *Optimization of key steps towards Rufinamide and Aripiprazole.* Marc Van den Bergh (M.Sc. Student, TU/e).
- **2014** *Thermal Claisen Rearrangement in Flow Increasing Selectivity of Two-step Synthesis.* Max Spapens (M.Sc. Student, TU/e).
- **2014** *Continuous metal scavenging with a flow liquid-liquid extraction unit.* Ferry Aldiansyah (M.Sc. Student, TU/e).
- **2014** *Photoredox-Catalyzed Trifluoromethylation of Thiols in Microflow.*

Bart Tegelbeckers (M.Sc. Student, TU/e).

- **2014** *Perfluorovinylation of Anilines in Continuous Micro Flow.* Laura Kollau (M.Sc. Student, TU/e).
- **2014** *Photoredox Aerobic Oxidation of Thiols to Disulfides in a Photomicroreactor.* Ali Talla (M.Sc. Student, TU/e).
- **2014** *Photocatalytic Perfluoralkylation in Photomicroreactors and a Study Towards the Distance-to-Time Transformation.*

Dannie J. G. P. van Osch (M.Sc. Student, TU/e).

2013 Synthesis of perfluoroalkylated heterocyclic substrates facilitated by photoredox catalysis in a capillary microreactor.

Hannes Gemoets (Erasmus Student, KaHo Sint Lieven).

- **2012** *Copper(I)-catalyzed azide-alkyne cycloaddition in a micro flow system: Catalyst activity study enabling high T operation and coupling to flow copper scavenging.* Alvaro C. Varas (M.Sc. Student, TU/e).
- **2012** Enzyme immobilization with innovative carrier materials for chiral synthesis of alfaaminoalcohols in microreactors. Hui Fu (M.Sc. Student, TU/e).
- **2012** Steps towards a high pressure intensified and multi-step flow synthesis of 1,2,3-triazoles via catalyst-free Huisgen Cycloaddition. Svetlana Borukhova (M.Sc. Student, TU/e).
- **2012** The Claisen rearrangement of allyl phenyl ether and the optimization of the synthesis of allyl phenyl ethers in continuous-flow High T, p and c processing. Danny J. G. P. van Osch (B.Sc. Student, TU/e).
- **2012** Johnson-Claisen rearrangement of cinnamyl alcohol and triethyl ortoacetate in microstructured reactors.

Ali Talla (B.Sc. Student, TU/e).

- **2012** *Influence of Novel Process Windows on the Claisen rearrangement of allyl phenyl ether.* Brian Driessen (B.Sc. Student, TU/e).
- **2011** *Contribution to the development of a multistep flow system for C–C bond formation reactions.* Andrew Musacchio (Undergraduate Student, MIT, USA)
- **2009** Contribution to the application of chiral imidate, phosphane ligands in several asymmetric test reactions.

Punit Rasadia (Erasmus-Mundus Student, Ghent University).

2009 Contribution to the synthesis of chiral imidate, phosphane ligands and their application in asymmetric allylic alkylation reactions.

Katrien Bert (Predoctoral Student, Ghent University).

2008 Contribution to the synthesis and validation of an imidazolidine organocatalyst for asymmetric α -halogenation.

Elvan Er (Socrates-Erasmus Student, Ghent University).

2007 *Contribution to the synthesis and validation of chiral dienes based on a bicyclo*[2.2.1]*heptadiene backbone.*

Yilmaz Özkiliç (Socrates-Erasmus Student, Ghent University).

Research Funding

Granted Research Project Applications

2018	Marie Curie Intra-European Fellowship, Dr. Paola Riente. Application of Metal Oxide Semiconductors in Photocatalysis (MOSPhotocat)	178 k€				
2018	Marie Curie Intra-European Fellowship, Dr. Carlo Sambiagio. Flow Chemistry for CH activation (FlowAct)					
2017	Host of a CSC scholarship, Ir. Yiran Cao.	200 k€				
	Electrochemistry in flow.					
2017	Collaboration with AbbVie.	25 k€				
	CH oxidation.					
2016	FET Open, co-applicant (Prof. Hessel Coordinator).	3,900 k€				
	Catalyst Cascade Reactions in 'One-Flow' within a Compartmentalized, Green-Solvent 'Digital Synthesis Machinery' – End-to-End Green Process Design for Pharmaceuticals (One-Flow).					
2015	VIDI award from Dutch Science Foundation, NWO, personal grant. Sensitized photoredox catalysis in continuous-flow microreactors (SensPhotoFlow).	800 k€				
2015	 Marie Curie Innovative Training Network, coordinator of the project, incl. 3 Ph.D. positions and a part-time project manager. Accelerating photoredox catalysis in continuous-flow systems. (Photo4Future) 	2,289 k€				
2014	Marie Curie Intra-European Fellowship, Dr. Yuanhai Su. Synthesis of trifluoromethylstyrene compounds via gas-liquid photoredox catalysis in continuous-flow microreactors. (PhotoFlow)	200 k€				
2013	CatchBio grant from Dutch Science Foundation, NWO. Boosting organometallic-catalyzed C–H oxidation reactions in continuous-flow microreactors.	225 k€				
2013	ECHO grant from Dutch Science Foundation, NWO. Breaking the unbreakable: C-H carbonylation in micro flow and vision to process.	260 k€				
2013	Marie Curie Career Integration Grant, personal grant. C–H Activation and Carbonylation in Continuous Microflow (FLACH)	100 k€				
2012	VENI award from Dutch Science Foundation, NWO, personal grant. <i>The Fluor Revolution: Boosting Fluorination in Continuous-Flow.</i>	250 k€				
2010	 Fulbright-Hays award, Bureau of Educational and Cultural Affairs, US Department of State, personal grant. Multistep Microchemical Synthesis of Imatinib – Towards a Continuous Manufacturing of Pharmaceuticals. 	[a]				
2005-2009	Extraordinary Research Fund fellow (BOF grant), personal grant.	200 k€				

Novel efficient chiral ligands for asymmetric catalysis. ^[a] Involves sponsorship of VISA, flight tickets, health insurance, etc.

Outreach activities

- Ted Talk at TEDxAUCollege "The sunny side of chemistry" (Amsterdam, March 7th, 2017): https://www.youtube.com/watch?v=bZ89r2tK3xc
- Participation in the BZT show for the demonstration of chemical experiments with children (Dutch television, Ned 3, February 2, 2013).
- Teacher days: Presentation for high school science teachers during docentendag ST (2013-2014).
- Presentation about photoredox catalysis in microreactors for highly gifted children.
- Demonstration of chemical experiments (Basisschool EigenWijs, Veldhoven, groep 7-8).
- Uitleggen van wetenschappelijke fenomenen op de Nederlandse Radio (NPO Radio 2, Programma: Bureau Kijk in de Vegte)
 - 26-07-2015 'Waarom klinkt heet water schenken anders dan koud water?' <u>http://www.npo.nl/bureau-kijk-in-de-vegte/26-07-2015/RBX_KRO_729397/RBX_KRO_1520543</u> (radio interview)
 - 2) 05-07-2015 'Waarom blijft plastic nat in de vaatwasser?' <u>http://www.npo.nl/bureau-kijk-in-de-vegte/05-07-2015/RBX_KRO_729394/RBX_KRO_1283784</u> (radio interview)
 - 3) 11-10-2015 'Waarom loopt het geluid op als je met een lepel op de bodem van een kop koffie tikt?' <u>http://www.kro-ncrv.nl/bureaukijkindevegte/seizoenen/2015/30-141062-11-10-2015/290-105413-waarom-loopt-het-geluid-op-als-je-met-een-lepel-op-de-bodem-van-een-kop-koffie-tikt</u> (radio interview)
- Twitter: @NoelGroupTUE

Other professional activities

- Flow Chemistry Consultant for InnoStudio (Hungary), AbbVie (USA), Genentech (USA), Merck (USA), Sun Pharmaceuticals (India).
- I am an associate editor for Journal of Flow Chemistry.
- I am actively involved in the peer-review process of several scientific journals.
- In 2012-2013, I was a docent coach at TU/e for novel bachelor students in the department Chemical Engineering and Chemistry.
- Teaching: Micro Process Technology (6KM45), Advanced Inorganic Chemistry (6KM60), Introduction chemistry and chemical technology (6A1X0), Chemical Reaction Engineering (6P3X0), Advanced Organic Chemistry (8RM00)
- I am a member of several professional associations:
 - o Royal Society of Chemistry (RSC), membership number 435174.
 - o Royal Society of Chemistry Flanders (KVCV), membership number 9282.
 - o American Chemical Society (ACS), membership number 30140007.